Classes de Seconde Corrigé

Correction du devoir commun de Mathématiques nº 2

EXERCICE 1

Partie A

1. • Il y a 0,35 × 400 = 140 exercices donnés les années précédentes , 400 – 140 = 260 n'ont jamais été donnés lors des précédents devoirs communs .

• il y a 0,25 × 156 = 39 sont des exercices déjà donnés les années antérieures en devoir commun, donc 156 – 36 = 117 sont des exercices sur les fonctions jamais donnés préalablement .

• Il y a $0,28 \times 400 = 112$ exercices de probabilités et 112 - 92 = 20 ont déjà été donnés les années précédentes , 400 - 140 = 260 n'ont jamais été donnés lors des précédents devoirs communs .

	Fonctions	Géométrie	Probabilités	Total
Déjà donné dans d'un devoir commun	39	81	20	140
Jamais donné dans un devoir commun	117	51	92	260
Total	156	132	112	400

2. a) • D'après le tableau d'effectifs, $p(D) = \frac{140}{400} = 0.35$ (on peut également utiliser le pourcentage donné dans l'énoncé).

• De même, $p(F) = \frac{156}{400} = 0.39$.

b) La probabilité pour que l'exercice tiré au sort soit un exercice sur les fonctions déjà donné précédemment est $p(D \cap F) = \frac{39}{400} = 0,0975$.

c) L'événement $D \cup F$ est l'événement : « l'exercice tiré au sort porte sur les fonctions **ou** a déjà été donné précédemment ». D'après les propriétés des probabilités, on sait que $p(D \cup F) = p(D) + p(F) - p(D \cap F)$. Donc, $p(D \cup F) = 0,35+,39-0,0975 = 0,6425$.

Partie B

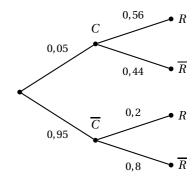
1. l'arbre de choix pondéré traduisant les conditions de l'énoncé est donné cicontre :

2. a) D'après l'arbre pondéré, la probabilité de l'événement $C \cap R$ est $p(C \cap R) = 0,05 \times 0,56 = 0,028$.

b) $p(R) = p(C \cap R) + p(\overline{C} \cap R) = 0,028 + 0,95 \times 0,2 = 0,218$.

3. L'événement : « l'élève ait oublié sa calculatrice, mais pas sa règle graduée »se note $C \cap \overline{R}$.

Sa probabilité est $p(C \cap \overline{R}) = 0.05 \times 0.44 = 0.022$.



EXERCICE 2

Partie A: Lecture graphiques

1. La distance à laquelle la balle devrait retomber au sol est l'abscisse du point d'intersection de la courbe (*C*) et l'axe des abscisses . On en déduit que la balle retouche le sol à environ 6,3 mètres de l'endroit où elle est frappée .

2. La hauteur maximale atteinte par la balle est l'ordonnée du sommet de la parabole (*C*), c'est-à-dire environ 1,1 mètre .

Partie B : Formes développée, factorisée et canonique de h

1. Pour tout x, -0, 1(x+0,3)(x-6,3) = -0, $1(x^2-6,3x+0,3x+1,89 = -0,1(x+0,3)(x-6,3) = -0$, $1x^2+0$, 6x+0, 189 = h(x). Donc, h(x) se factorise bien sous la forme h(x) = -0, $1x^2+0$, 6x+0, 189.

2. Pour tout x, -0, $1(x-3)^2 + 1$, 089 = -0, $1(x^2 - 2 \times x \times 3 + 3^2) + 1$, 089 = -0, $1(x^2 - 6x + 9) + 1$, 089 = -0, $1x^2 + 0$, 6x - 0, 9 + 1, 089 = -0, $1(x-3)^2 + 1$, 089 = -0, $1(x-3)^2 + 1$, 089 = -0, $1(x^2 - 6x + 9) + 1$, 089 = -0, $1(x-3)^2 + 1$, $1(x-3)^2 + 1$,

Partie C : Utilisation des formes de h

1. La hauteur de la balle lorsque le joueur A la reprend est $h(0) = -0, 1 \times 0^2 + 0, 6 \times 0 + 0, 189 = 0, 189$. La hauteur initiale de la balle est donc 18,9 cm.

- **2.** Comme le filet est situé **quatre** mètres après son point de départ, la hauteur de la balle à cet endroit est h(4). Or, $h(4) = -0.1 \times 4^2 + 0.6 \times 4 + 0.189 = 0.989$. Comme h(4) > 0.95, la balle passera le filet.
- **3.** Déterminer la distance x pour laquelle elle retombera au sol revient à résoudre h(x) = 0. Or , $h(x) = 0 \Leftrightarrow -0, 1(x+0,3)(x-6,3) = 0 \Leftrightarrow (x+0,3)(x-6,3) = 0$.

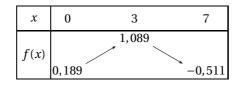
Un produit de facteurs étant nul si et seulement si l'un des facteurs est nul, cette dernière équation équivaut encore à :

•
$$x + 0, 3 = 0 \Leftrightarrow x = -0, 3$$
 ou

•
$$x-6,3=0 \Leftrightarrow x=6,3$$
.

On en conclut que la balle retombera au sol à environ 6,3 mètres de l'endroit où elle est frappée .

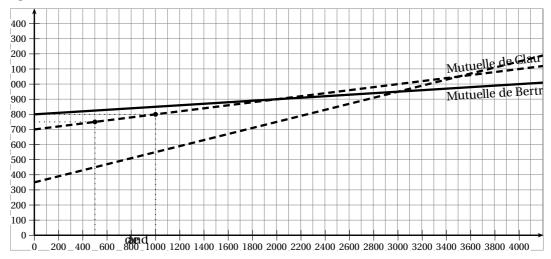
4. a) En utilisant la forme canonique, on sait que h(x) s'écrit sous la forme $h(x) = a(x - \alpha)^2 + \beta$, avec a = -0, 1, $\alpha = 3$ et $\beta = 1,089$. Donc, son tableau de variations est le suivant :



b) On en déduit que la hauteur maximale atteinte par la balle est 1,089 mètre et ce maximum est atteint en x = 3.

EXERCICE 3

- **1.** a) Pour $1000 \ \in$ de frais médicaux annuels , Bertrand devra payer $800 \ \in$ pour sa mutuelle et il restera $0.05 \times 1000 = 50 \ \in$ de frais à sa charge , soit au total $800 + 50 = 850 \ \in$.
 - b) L'expression de B(x) s'obtient en ajoutant la somme allouée à la mutuelle (800 €) et 5 % de la somme x, c'est-à-dire B(x) = 800 + 0.05x.
- **2.** Comme $A(0) = 350 + 0.2 \times 0$ et $A(1000) = 350 + 0.2 \times 1000 = 550$ et que A est affine, sa représentation graphique est la droite passant par les points de coordonnées (0; 350) et (1000; 550).



- 3. a) Si on s'attend à des frais médicaux aux alentours de $1000\,\mathrm{e}$, mieux vaut choisir la mutuelle de Claude .
 - **b)** Résoudre $A(x) < B(x) \Leftrightarrow 350 + 0, 2x < 800 + 0, 05x \Leftrightarrow 0, 15x < 450 \Leftrightarrow x < \frac{450}{0, 15} \Leftrightarrow x < 3000$. On en conclut qu'à partir de 3000€ de frais médicaux, il est plus intéressant la mutuelle d'Albert.
- **4. a)** On sait que C(1000) = 800 et C(500) = 750 et que la fonction C est affine . On en déduit qu'elle a une expression de la forme C(x) = ax + b avec $a = \frac{C(1000) C(500)}{1000 500} = \frac{800 750}{500} = 0, 1$. Comme C(1000) = 800, on en déduit que $0, 1 \times 1000 + b = 800 \Leftrightarrow 100 + b = 800 \Leftrightarrow b = 700$. On en conclut qu'une expression de la fonction C est C(x) = 0, 1x + 700.
 - **b)** Le coût de la mutuelle est C(0) = 700 et le pourcentage restant à charge du patient est 0,1, c'est-à-dire 10 %.

EXERCICE 4

	Nombre d'employés	1	2	3	4	5	6	7
1.	Effectif	2	10	48	90	54	14	4
	Effectifs cumulés	2	12	60	150	204	218	222

- 2. a) Le nombre moyen d'employés par magasin est : $\frac{2 \times 1 + 10 \times 2 + 48 \times 3 + 90 \times 4 + 54 \times 5 + 14 \times 6 + 14 \times 6}{222} \approx 4$
 - **b)** Comme $\frac{222}{4} = 55,5$, le premier quartile est la 56ème valeur de la série , c'est-à-dire $Q_1 = 3$.
 - La médiane est la moyenne entre la 111ème valeur de la série est la 112ème, c'est-à-dire Me = 4.
 - Comme $\frac{3}{4} \times 222 = 166,5$, le troisième quartile est la 167ème valeur de la série, c'est-à-dire $Q_3 = 5$.

EXERCICE 5

1. •
$$3x - 3 = 0 \Leftrightarrow 3x = 3 \Leftrightarrow x = \frac{3}{3} = 1$$
;
• $3x + 1 = 0 \Leftrightarrow 3x = -1 \Leftrightarrow x = -\frac{1}{3}$.

x	$-\infty$		$-\frac{1}{3}$		1		+∞
Signe de $3x - 3$		-		-	0	+	
Signe de $3x + 1$		-	0	+		+	
Signe du produit		+	0	_	0	+	

- **2.** Pour tout réel x, $(3x-1)^2 4 = (3x-1)^2 2^2 = ((3x-1)-2)((3x-1)+2) = (3x-1-2)(3x-1+2) = (3x-3)(3x+1)$.
- 3. D'après la question précédente, $(3x-1)^2-4<0 \Leftrightarrow (3x-3)(3x+1)<0$. Ainsi, résoudre l'inéquation $(3x-1)^2-4<0$ revient à déterminer les valeurs de x pour lesquelles le produit (3x-3)(3x+1) est strictement négatif.

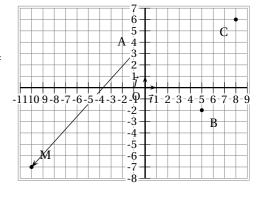
D'après le tableau de signes, on en conclut que l'ensemble des solutions de $(3x-1)^2-4<0$ est $\mathcal{S}=\left[-\frac{1}{3};1\right[$.

EXERCICE 6

- 1. Constructions: voir figure ci-contre.
- **2.** Le vecteur \overrightarrow{AM} a pour coordonnées $(x_M x_A; y_M y_A) = (x_M (-1); y_M 3) = (x_M + 1; y_M 3)$.
 - Donc, les coordonnées de *M* vérifient le système

$$\begin{cases} x_M + 1 = -9 \\ y_M - 3 = -10 \end{cases} \Leftrightarrow \begin{cases} x_M = -10 \\ y_M = -7 \end{cases}$$

On en conclut que le point M a pour coordonnées (-10; -7).



- **3. a)** Le vecteur \overrightarrow{AC} a pour coordonnées $(x_C x_A; y_C y_A) = (8 (-1); 6 3) = (9; 3)$.
 - Le vecteur \overrightarrow{BM} a pour coordonnées $(x_M x_M; y_M y_B) = (-10 5; -7 (-2)) = (-15; -5)$.
 - b) Pour savoir si les droites (AC) et (BM) sont parallèles, il suffit de vérifier si les vecteurs \overrightarrow{AC} et \overrightarrow{BM} sont colinéaires. Le déterminant de ces deux vecteurs est donc $\det(\overrightarrow{AC}; \overrightarrow{BM}) = 9 \times (-5) (-15) \times 3 = 0$. Comme leur déterminant est nul , les vecteurs \overrightarrow{AC} et \overrightarrow{BM} sont colinéaires .

On an application less durites (AC) et (DM) application

On en conclut que les droites (AC) et (BM) sont parallèles .

- **4.** Pour savoir si les points O, M et C sont alignés, il suffit de vérifier si les vecteurs \overrightarrow{OM} et \overrightarrow{OC} sont colinéaires.
 - Le vecteur \overrightarrow{OM} a pour coordonnées $(x_M x_O; y_M y_O) = (-10; -7)$.
 - De même, le vecteur \overrightarrow{OC} a pour coordonnées $(x_C; y_C) = (8; 6)$.

Le déterminant de ces deux vecteurs est donc dét $(\overrightarrow{OM}; \overrightarrow{OC}) = (-10) \times 6 - 8 \times (-7) = -4$.

Comme leur déterminant est non nul, les vecteurs \overrightarrow{OM} et \overrightarrow{OC} ne sont pas colinéaires.

On en conclut que les points O, M et C ne sont pas alignés.