I- Exercices sur les principales méthodes :

1- Pour chacune des suites ci-dessous déterminer si elle existe sa limite (en justifiant)

 a_0 = 3 et pour tout $n \in \mathbb{N}$ $a_{n+1} = (a_n)^2 + n$ (on pourra utiliser le théorème de comparaison)

 $c_0=2$ et pour tout $n \in \mathbb{N}$ $c_{n+1}=1,02c_n$

 $d_0 = 520$ et pour tout $n \in \mathbb{N}$ $d_{n+1} = d_n - 0.2$

 $e_0 = -10$ et pour tout $n \in \mathbb{N}$ $e_{n+1} = 0.5e_n + 3$ (*question non guidée : voir plus loin)

 $b_0=1$ et pour tout $n \in \mathbb{N}$ $b_{n+1}=b_n^2+b_n+\frac{1}{n}$ (*question non guidée : voir plus loin)

2- Première version guidée pour *e*.

- a- Montrer que si la suite converge alors sa limite est 6.
- b- On considère la suite définie par $u_n = e_n 6$. Montrer que la suite u est géométrique de raison 0,5.
- c- En déduire une expression de e_n en fonction de n puis sa limite.
 - 3- Seconde version guidée pour la suite *e*.

On considère qu'on a déjà répondu au 2.a et donc que la limite si la suite converge est 6.

- a- Montrer que la suite est majorée par 6.
- b- Montrer que la suite est croissante.
- c- Conclure.

4- Version guidée (plus la question d) pour *b*

- a- Montrer que la suite *b* est croissante.
- b- Si elle était majorée, que pourrait-on en déduire pour sa limite éventuelle ?
- c- En déduire qu'elle n'est pas majorée. Quelle est alors sa limite ?
- d- Une suite non majorée a-t-elle toujours pour limite $+\infty$?

II- Question théoriques type vrai-faux de bac :

- 1- Si pour tout n, $u_n > v_n$ et si $\lim_{n \to \infty} u_n = 3$ alors la limite de v est un nombre strictement inférieur à 3.
- 2- Si pour tout n, $u_n > v_n$ et si $\lim_{n \to +\infty} u_n = -\infty$ alors la limite de v est $-\infty$.
- 3- Si les suites u et v divergent alors u+v diverge.
- 4- Si la suite *u* converge et la suite *v* diverge alors *u.v* diverge.
- 5- Si $u_n < \frac{1}{n}$ pour tout n > 0, alors u converge vers 0.

III- Début d'un sujet de bac avec algorithme :

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{2u_n}$$
.

1. On considère l'algorithme suivant :

Variables : n est un entier naturel u est un réel positif

Initialisation : Demander la valeur de nAffecter à u la valeur 1

Traitement : Pour i variant de 1 à n :

| Affecter à u la valeur $\sqrt{2u}$ Fin de Pour

Sortie : Afficher u

- **a.** Donner une valeur approchée à 10^{-4} près du résultat qu'affiche cet algorithme lorsque l'on choisit n = 3.
- b. Que permet de calculer cet algorithme?
- **c.** Le tableau ci-dessous donne des valeurs approchées obtenues à l'aide de cet algorithme pour certaines valeurs de *n*.

n	1	5	10	15	20
Valeur affichée	1,4142	1,9571	1,9986	1,9999	1,9999

Quelles conjectures peut-on émettre concernant la suite (u_n) ?

- 2. a. Démontrer que, pour tout entier naturel n, $0 < u_n < 2$
- 2.b. Déterminer le sens de variation de la suite (u_n) .
- 2.c. Déterminer la limite de la suite.