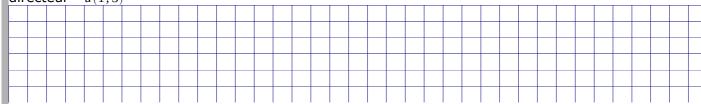
Méthodes relatives aux équations de droites

Déterminer une équation cartésienne de droite

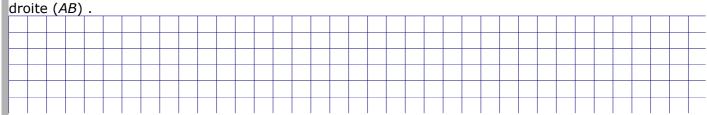
▶ • Droite (D) passant par un point A donné et de vecteur directeur \vec{u}


Introduction: Un point M(x; y) appartient à (D) si et seulement si $d\acute{e}t(\overline{AM};\vec{u})=0$

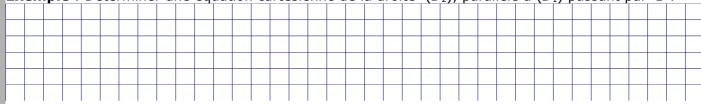
On calcule les coordonnées de \overrightarrow{AM} , puis l'expression f(x; y) de $d\acute{e}t(\overrightarrow{AM}; \vec{u})$ à l'aide de x et y.

Conclusion: Une équation cartésienne de (D) est f(x; y) = 0.

Exemple: Déterminer une équation cartésienne de la droite (D_1) passant par A(-2; 1) et de vecteur


directeur $\vec{u}(1;3)$

▶ ② Droite passant par deux points A et B

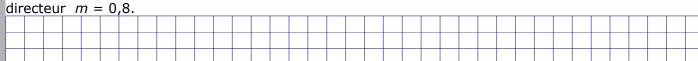

On applique la méthode lacktriangle en utilisant comme vecteur directeur \overline{AB} .

Exemple : On considère les points A(-2 ; 1) et B(3 ; 3). Déterminer une équation cartésienne de la droite (4B)

▶ ⑤ Droite (D_2) parallèle à une droite (D_1) donnée et passant par le point A On applique la méthode ⑥ en utilisant un vecteur directeur de (D_1) et le point A.

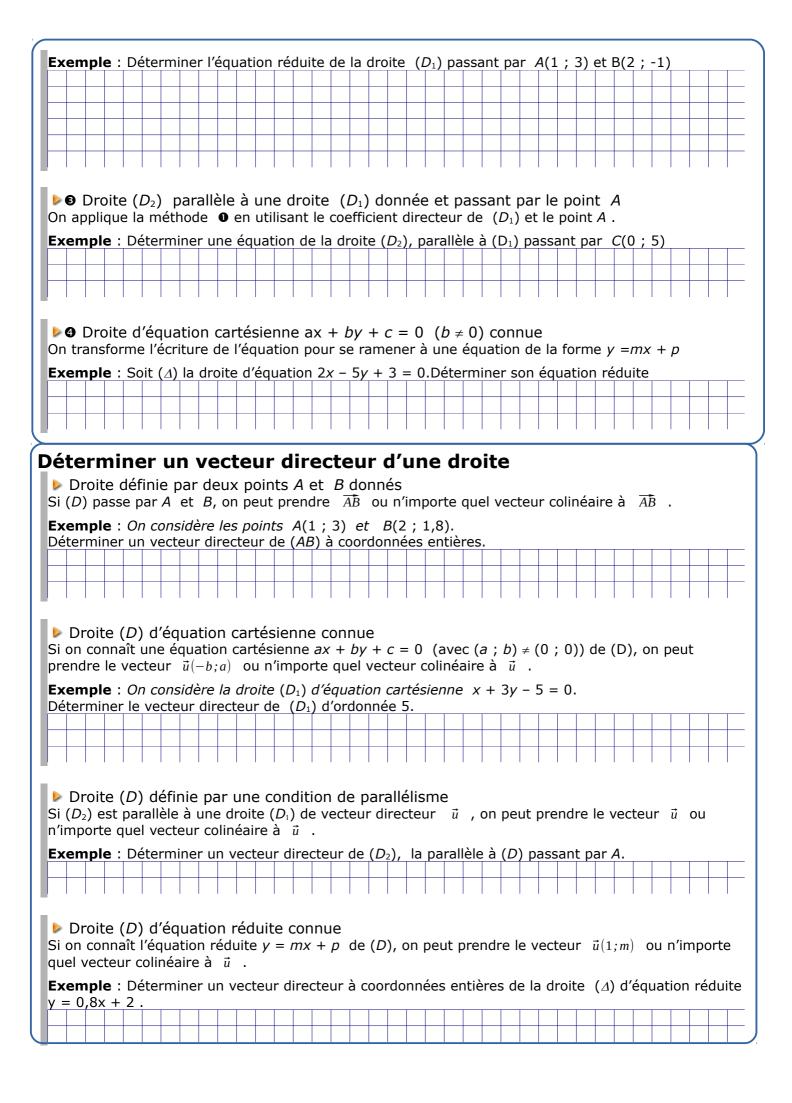
Exemple : Déterminer une équation cartésienne de la droite (D_2) , parallèle à (D_1) passant par B.

O Droite d'équation réduite connue


On transforme l'écriture de l'équation pour se ramener à une équation de la forme ax + by + c = 0

Exemple: Déterminer une équation cartésienne de la droite (D) d'équation réduite y = 0.8x + 3.6.

Déterminer l'équation réduite d'une droite (non parallèle à l'axe des ordonnées)


Droite (D) passant par un point A donné et de coefficient directeur mOn applique la formule $y = m(x - x_A) + y_A$ et on développe le membre de droite de cette équation.

Exemple: Déterminer l'équation réduite de la droite (D) passant par A(-5; 3) et de coefficient directeur m = 0.8.

▶ ② Droite passant par deux points A et B (avec $x_A \neq x_B$)

On applique la méthode \bullet en utilisant la formule $m = \frac{y_B - y_A}{x_B - x_A}$

n	éterminer	10.00	officiont	diroctour	d'una	droita
D	eterminer	ie co	etticient	airecteur	a une	aroite

- Droite (D) parallèle à l'axe des abscisses Dans ce cas, son coefficient directeur est nul.
- ▶ Droite (D) d'équation réduite connue

Si on connaît l'équation réduite y = mx + p de (D), son coefficient directeur est m que l'on obtient par simple identification.

Exemple: Déterminer le coefficient directeur de la droite (D_1) d'équation réduite y = -10x + 56.

▶ Droite (D) d'équation cartésienne connue

Si on connaît une équation cartésienne ax + by + c = 0 (avec $b \neq 0$) de (D), on trouve son équation réduite et on applique la méthode précédente.

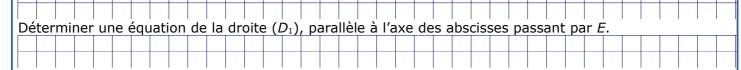
Exemple: Déterminer le coefficient directeur de la droite (D_2) d'équation x + 3y - 5 = 0.

▶ Droite passant par deux points A et B (avec $x_A \neq x_B$)

On calcule m en utilisant la formule $m = \frac{y_B - y_A}{x_B - x_A}$

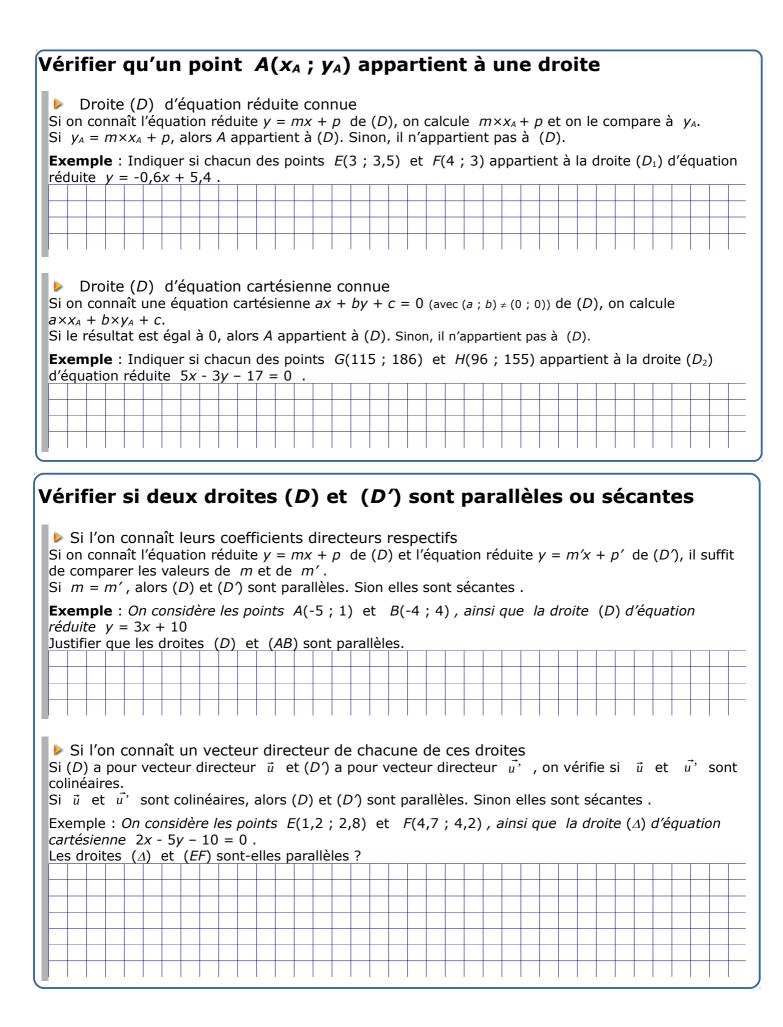
Exemple: On considère les points A(10; 5) et B(45; 12).

Calculer le coefficient directeur de la droite (AB).


Droites parallèles aux axes du repère

Si (D)	Une équation cartésienne est	un vecteur directeur est	son coefficient directeur vaut	passe par $A(x_A; y_A)$ et $B(x_B; y_B)$
est parallèle à l'axe des abscisses	y - k = 0	tout vecteur colinéaire à $\vec{u}(1;0)$	<i>m</i> = 0	avec $y_A = y_B = k$
est parallèle à l'axe des ordonnées	x - k = 0	tout vecteur colinéaire à $\vec{u}(0;1)$	non défini	avec $x_A = x_B = k$

Exemples:


On considère les points E(-3; 5), F(-3; 8) et G(2; 8).

Déterminer une équation de chacune des droites (EF) et (FG)

Déterminer une équation de la droite (D_2) , parallèle à l'axe des ordonnées passant par G.

Déterminer le coefficient directeur de la droite (D_3) passant par I(2;-1) et J(10;-1)

